Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).
Google Scholar
Raymond, P. A. et al. World carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).
Google Scholar
Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the dimensions of streams and rivers. Nat. Geosci. 8, 696–699 (2015). Essential study conceptualizing (on the premise of a data synthesis) how the sources and magnitude of CO2 evasion flux change alongside a stream–river continuum.
Ciais, P. et al. in Native climate Change 2013 The Bodily Science Basis. Contribution of Working Group I to the Fifth Analysis Report of the Intergovernmental Panel on Native climate Change (eds Stocker, T. F. et al.) Ch. 6 (Cambridge Univ. Press, 2013).
Friedlingstein, P. et al. World carbon value vary 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).
Google Scholar
Cole, J. J. et al. Plumbing the worldwide carbon cycle: integrating inland waters into the terrestrial carbon value vary. Ecosystems 10, 172–185 (2007). A pioneering study exhibiting the place of inland waters for large-scale carbon fluxes and highlighting them as ‘reactors’ fairly than ‘passive pipes’.
Google Scholar
Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a gift synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).
Google Scholar
Odum, H. T. Major manufacturing in flowing waters. Limnol. Oceanogr. 1, 102–117 (1956).
Google Scholar
Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, 99–118 (2018). A synthesis of the predominant drivers and constraints on metabolic regimes of stream and river ecosystems.
Google Scholar
Barnes, A. D. et al. Energy flux: the hyperlink between multitrophic biodiversity and ecosystem functioning. Developments Ecol. Evol. 33, 186–197 (2018).
Google Scholar
Costanza, R. & Mageau, M. What’s a healthful ecosystem? Aquat. Ecol. 33, 105–115 (1999).
Google Scholar
Blöschl, G. et al. Altering native climate every will improve and reduces European river floods. Nature 573, 108–111 (2019).
Google Scholar
Gudmundsson, L. et al. Globally observed tendencies in indicate and extreme river transfer attributed to native climate change. Science 371, 1159–1162 (2021).
Google Scholar
Yang, X., Pavelsky, T. M. & Allen, G. H. The earlier and way forward for worldwide river ice. Nature 577, 69–73 (2020).
Google Scholar
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
Google Scholar
Belletti, B. et al. A few million limitations fragment Europe’s rivers. Nature 588, 436–441 (2020).
Google Scholar
Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. Extreme-resolution mapping of worldwide ground water and its long-term modifications. Nature 540, 418–422 (2016).
Google Scholar
Cooley, S. W., Ryan, J. C. & Smith, L. C. Human alteration of worldwide ground water storage variability. Nature 591, 78–81 (2021).
Google Scholar
Jaramillo, F. & Destouni, G. Native transfer regulation and irrigation elevate worldwide human water consumption and footprint. Science 350, 1248–1251 (2015).
Google Scholar
Quinton, J. N., Govers, G., Oost, Okay. V. & Bardgett, R. D. The impression of agricultural soil erosion on biogeochemical biking. Nat. Geosci. 3, 311–314 (2010).
Google Scholar
Mekonnen, M. M. & Hoekstra, A. Y. World anthropogenic phosphorus a whole lot to freshwater and associated grey water footprints and water air air pollution ranges: a extreme‐determination worldwide study. Water Resour. Res. 54, 345–358 (2018).
Google Scholar
Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013). The first study exhibiting the extent to which human actions have altered the magnitude of updated lateral carbon fluxes from land to ocean.
Google Scholar
Rüegg, J. et al. Pondering like a shopper: linking aquatic basal metabolism and shopper dynamics. Limnol. Oceanogr. Lett. 6, 1–17 (2021).
Google Scholar
Fernández-Martínez, M. et al. World tendencies in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).
Google Scholar
Behrenfeld, M. J. et al. Native weather-driven tendencies in updated ocean productiveness. Nature 444, 752–755 (2006).
Google Scholar
Phillips, J. S. Time‐numerous responses of lake metabolism to gentle and temperature. Limnol. Oceanogr. 65, 652–666 (2020).
Google Scholar
Uehlinger, U. Annual cycle and inter‐annual variability of gross main manufacturing and ecosystem respiration in a floodprone river all through a 15‐yr interval. Freshw. Biol. 51, 938–950 (2006).
Google Scholar
Uehlinger, U. & Naegeli, M. W. Ecosystem metabolism, disturbance, and stability in a prealpine gravel mattress river. J. North Am. Benthol. Soc. 17, 165–178 (1998).
Google Scholar
Mulholland, P. J. et al. Inter-biome comparability of issues controlling stream metabolism. Freshw. Biol. 46, 1503–1517 (2001).
Google Scholar
Roberts, B. J., Mulholland, P. J. & Hill, W. R. Quite a lot of scales of temporal variability in ecosystem metabolism costs: outcomes from 2 years of regular monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).
Google Scholar
Appling, A. P., Hall, R. O., Yackulic, C. B. & Arroita, M. Overcoming equifinality: leveraging very very long time sequence for stream metabolism estimation. J. Geophys. Res. Biogeosci. 123, 624–645 (2018).
Google Scholar
Appling, A. P. et al. The metabolic regimes of 356 rivers within the USA. Sci. Data 5, 180292 (2018).
Google Scholar
Canadell, M. B. et al. Regimes of main manufacturing and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021).
Google Scholar
Myrstener, M., Gómez‐Gener, L., Rocher‐Ros, G., Giesler, R. & Sponseller, R. A. Nutritional vitamins have an effect on seasonal metabolic patterns and complete productiveness of Arctic streams. Limnol. Oceanogr. 66, S182–S196 (2021).
Google Scholar
Savoy, P. et al. Metabolic rhythms in flowing waters: an technique for classifying river productiveness regimes. Limnol. Oceanogr. 64, 1835–1851 (2019).
Google Scholar
Kirk, L., Hensley, R. T., Savoy, P., Heffernan, J. B. & Cohen, M. J. Estimating benthic gentle regimes improves predictions of main manufacturing and constrains light-use effectivity in streams and rivers. Ecosystems 24, 825–839 (2021).
Google Scholar
Bernhardt, E. S. et al. Mild and transfer regimes regulate the metabolism of rivers. Proc. Natl Acad. Sci. USA 119, e2121976119 (2022).
Google Scholar
Savoy, P. & Harvey, J. W. Predicting gentle regime controls on main productiveness all through CONUS river networks. Geophys. Res. Lett. 48, e2020GL092149 (2021).
Google Scholar
Julian, J. P., Stanley, E. H. & Doyle, M. W. Basin-scale penalties of agricultural land use on benthic gentle availability and first manufacturing alongside a sixth-order temperate river. Ecosystems 11, 1091–1105 (2008).
Google Scholar
Hall, R. O. et al. Turbidity, gentle, temperature, and hydropeaking administration main productiveness throughout the Colorado River, Grand Canyon. Limnol. Oceanogr. 60, 512–526 (2015).
Google Scholar
Hosen, J. D. et al. Enhancement of main manufacturing all through drought in a temperate watershed is greater in greater rivers than headwater streams. Limnol. Oceanogr. 64, 1458–1472 (2019).
Google Scholar
Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the worldwide carbon cycle to specific particular person metabolism. Funct. Ecol. 19, 202–213 (2005).
Google Scholar
Demars, B. O. L. et al. Temperature and the metabolic stability of streams. Freshw. Biol. 56, 1106–1121 (2011).
Google Scholar
Tune, C. et al. Continental-scale decrease in web main productiveness in streams as a consequence of native climate warming. Nat. Geosci. 11, 415–420 (2018).
Google Scholar
Hood, J. M. et al. Elevated helpful useful resource use effectivity amplifies optimistic response of aquatic main manufacturing to experimental warming. Glob. Change Biol. 24, 1069–1084 (2018).
Google Scholar
Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F. & Tempo, M. L. Have an effect on of meals internet development on carbon alternate between lakes and the surroundings. Science 277, 248–251 (1997).
Google Scholar
Iannucci, F. M., Beneš, J., Medvedeff, A. & Bowden, W. B. Biogeochemical responses over 37 years to manipulation of phosphorus concentrations in an Arctic river: The Increased Kuparuk River Experiment. Hydrol. Course of. 35, e14075 (2021).
Google Scholar
Rosemond, A. D. et al. Experimental nutrient additions velocity up terrestrial carbon loss from stream ecosystems. Science 347, 1142–1145 (2015). A key study explaining how nutrient additional can velocity up terrestrial carbon loss from stream ecosystems.
Google Scholar
Arroita, M., Elosegi, A. & Hall, R. O. Jr Twenty years of day-to-day metabolism current riverine restoration following sewage abatement. Limnol. Oceanogr. 64, 77–92 (2019).
Google Scholar
Battin, T. J. et al. Biophysical controls on pure carbon fluxes in fluvial networks. Nat. Geosci. 1, 95–100 (2008). A vital article conceptualizing how bodily and natural processes combine to kind metabolic dynamics and carbon fluxes in fluvial networks.
Google Scholar
Hoellein, T. J., Bruesewitz, D. A. & Richardson, D. C. Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnol. Oceanogr. 58, 2089–2100 (2013).
Google Scholar
Marzolf, N. S. & Ardón, M. Ecosystem metabolism in tropical streams and rivers: a overview and synthesis. Limnol. Oceanogr. 66, 1627–1638 (2021).
Google Scholar
Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Cross-ecosystem carbon flows connecting ecosystems worldwide. Nat. Commun. 9, 4825 (2018).
Google Scholar
Ciais, P. et al. Empirical estimates of regional carbon budgets point out decreased worldwide soil heterotrophic respiration. Natl Sci. Rev. 8, nwaa145 (2020).
Google Scholar
Bauer, J. E. et al. The altering carbon cycle of the coastal ocean. Nature 504, 61–70 (2013). Essential overview on the sources, alternate and fates of carbon throughout the coastal ocean and the way in which human actions have altered the coastal carbon cycle.
Google Scholar
Reichert, P., Uehlinger, U. & Acuña, V. Estimating stream metabolism from oxygen concentrations: influence of spatial heterogeneity. J. Geophys. Res. Biogeosci. 114, G03016 (2009).
Google Scholar
Koenig, L. E. et al. Emergent productiveness regimes of river networks. Limnol. Oceanogr. Lett. 4, 173–181 (2019).
Google Scholar
Rodríguez-Castillo, T., Estévez, E., González-Ferreras, A. M. & Barquín, J. Estimating ecosystem metabolism to whole river networks. Ecosystems 22, 892–911 (2019).
Google Scholar
Segatto, P. L., Battin, T. J. & Bertuzzo, E. The metabolic regimes on the dimensions of an entire stream neighborhood unveiled via sensor data and machine learning. Ecosystems 24, 1792–1809 (2021).
Google Scholar
Loreau, M., Mouquet, N. & Holt, R. D. Meta‐ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 6, 673–679 (2003).
Google Scholar
Mastrandrea, M. D. et al. Guidance Remember for Lead Authors of the IPCC Fifth Analysis Report on Fixed Treatment of Uncertainties (Intergovernmental Panel on Native climate Change (IPCC), 2010).
Tank, S. E., Fellman, J. B., Hood, E. & Kritzberg, E. S. Previous respiration: controls on lateral carbon fluxes all through the terrestrial‐aquatic interface. Limnol. Oceanogr. Lett. 3, 76–88 (2018). Essential synthesis on the mechanisms and controls of pure and inorganic carbon flows all through terrestrial–aquatic interfaces.
Google Scholar
Aitkenhead, J. A. & McDowell, W. H. Soil C:N ratio as a predictor of annual riverine DOC flux at native and worldwide scales. World Biogeochem. Cycles 14, 127–138 (2000).
Google Scholar
Regnier, P., Resplandy, L., Najjar, R. G. & Ciais, P. The land-to-ocean loops of the worldwide carbon cycle. Nature 603, 401–410 (2022).
Google Scholar
van Hoek, W. J. et al. Exploring spatially categorical modifications in carbon budgets of worldwide river basins via the 20th century. Environ. Sci. Technol. 55, 16757–16769 (2021). A worldwide quantitative analysis of river carbon fluxes throughout the twentieth century, highlighting the blended have an effect on of environmental and anthropogenic controls on the long-term patterns of worldwide carbon export.
Google Scholar
Abril, G. & Borges, A. V. Ideas and views: carbon leaks from flooded land: do we now have to replumb the inland water energetic pipe? Biogeosciences 16, 769–784 (2019). Essential overview emphasizing the place of flooding for inland water carbon biking on the worldwide scale.
Google Scholar
Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P. & Ciais, P. How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: a case study for the Amazon Basin. One Earth 3, 226–236 (2020).
Google Scholar
Raymond, P. A., Saiers, J. E. & Sobczak, W. V. Hydrological and biogeochemical controls on watershed dissolved pure matter transport: pulse‐shunt thought. Ecology 97, 5–16 (2016).
Google Scholar
Catalán, N., Marcé, R., Kothawala, D. N. & Tranvik, L. J. Pure carbon decomposition costs managed by water retention time all through inland waters. Nat. Geosci. 9, 501–504 (2016).
Google Scholar
Maavara, T., Lauerwald, R., Regnier, P. & Cappellen, P. V. World perturbation of pure carbon biking by river damming. Nat. Commun. 8, 15347 (2017).
Google Scholar
Mendonça, R. et al. Pure carbon burial in worldwide lakes and reservoirs. Nat. Commun. 8, 1694–1697 (2017).
Google Scholar
Downing, J. A. et al. Sediment pure carbon burial in agriculturally eutrophic impoundments over the previous century. World Biogeochem. Cycles 22, GB1018 (2008).
Google Scholar
Deemer, B. R. et al. Greenhouse gasoline emissions from reservoir water surfaces: a model new worldwide synthesis. Bioscience 66, 949–964 (2016).
Google Scholar
Abril, G. et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395–398 (2014).
Google Scholar
Dodds, W. Okay. et al. Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River data. Freshw. Sci. 32, 1073–1087 (2013).
Google Scholar
Ros, G. R., Sponseller, R. A., Bergström, A. Okay., Myrstener, M. & Giesler, R. Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams. Glob. Change Biol. 26, 1400–1413 (2020).
Google Scholar
Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & Del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC keep CO2 supersaturation in small boreal streams. Sci. Entire Environ. 579, 902–912 (2017).
Google Scholar
Aho, Okay. S., Hosen, J. D., Logozzo, L. A., McGillis, W. R. & Raymond, P. A. Highest costs of gross main productiveness maintained no matter CO2 depletion in a temperate river neighborhood. Limnol. Oceanogr. Lett. 6, 200–206 (2021).
Google Scholar
Wehrli, B. Conduits of the carbon cycle. Nature 503, 346–347 (2013).
Google Scholar
Sarmiento, J. L. & Sundquist, E. T. Revised value vary for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589–593 (1992).
Google Scholar
Lacroix, F., Ilyina, T., Laruelle, G. G. & Regnier, P. Reconstructing the preindustrial coastal carbon cycle via a world ocean circulation model: was the worldwide continental shelf already every autotrophic and a CO2 sink? Glob. Biogeochem. Cycles 35, e2020GB006603 (2021).
Google Scholar
Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint surroundings‐ocean inversion for ground fluxes of carbon dioxide: 1. Methods and worldwide‐scale fluxes. World Biogeochem. Cycles 21, GB1019 (2007).
Resplandy, L. et al. Revision of worldwide carbon fluxes primarily based totally on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018).
Google Scholar
Lee, L.-C. et al. Unusual roles of discharge, slope and SOC in DOC transport in small mountainous rivers, Taiwan. Sci. Rep. 9, 1574 (2019).
Google Scholar
Reddy, S. Okay. Okay. et al. Export of particulate pure carbon by the mountainous tropical rivers of Western Ghats, India: variations and controls. Sci. Entire Environ. 751, 142115 (2021).
Google Scholar
Zhang, X., Tarpley, D. & Sullivan, J. T. Quite a few responses of vegetation phenology to a warming native climate. Geophys. Res. Lett. 34, L19405 (2007).
Google Scholar
Pan, Y. et al. An enormous and protracted carbon sink on the earth’s forests. Science 333, 988–993 (2011).
Google Scholar
Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Huge will improve in carbon burial in northern lakes via the Anthropocene. Nat. Commun. 6, 10016 (2015).
Google Scholar
Guillemette, F., Berggren, M., Giorgio, P. Adel. & Lapierre, J.-F. Will improve in terrestrially derived carbon stimulate pure carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).
Google Scholar
Hastie, A., Lauerwald, R., Ciais, P., Papa, F. & Regnier, P. Historic and future contributions of inland waters to the Congo Basin carbon stability. Earth Syst. Dyn. 12, 37–62 (2020).
Google Scholar
Nakhavali, M. et al. Leaching of dissolved pure carbon from mineral soils performs a serious place throughout the terrestrial carbon stability. Glob. Change Biol. 27, 1083–1096 (2021).
Google Scholar
Tian, H. et al. World patterns and controls of soil pure carbon dynamics as simulated by various terrestrial biosphere fashions: current standing and future directions. World Biogeochem. Cycles 29, 775–792 (2015).
Google Scholar
Öquist, M. G. et al. The whole annual carbon stability of boreal forests is extraordinarily delicate to precipitation. Environ. Sci. Technol. Lett. 1, 315–319 (2014).
Google Scholar
Jones, J. B.Jr, Stanley, E. H. & Mulholland, P. J. Prolonged‐time interval decline in carbon dioxide supersaturation in rivers all through the contiguous United States. Geophys. Res. Lett. 30, 1495 (2003).
Google Scholar
Raymond, P. A. & Oh, N.-H. Long term modifications of chemical weathering merchandise in rivers intently impacted from acid mine drainage: insights on the impression of coal mining on regional and worldwide carbon and sulfur budgets. Earth Planet. Sci. Lett. 284, 50–56 (2009).
Google Scholar
Ran, L. et al. Substantial decrease in CO2 emissions from Chinese language language inland waters as a consequence of worldwide change. Nat. Commun. 12, 1730 (2021).
Google Scholar
Zarnetske, J. P., Bouda, M., Geophysical, B. A., Saiers, J. & Raymond, P. Generality of hydrologic transport limitation of watershed pure carbon flux all through ecoregions of the USA. Geophys. Res. Lett. 45, 11,702–11,711 (2018).
Google Scholar
Liu, S. et al. The importance of hydrology in routing terrestrial carbon to the surroundings by the use of worldwide streams and rivers. Proc. Natl Acad. Sci. USA 119, e2106322119 (2022).
Google Scholar
Nydahl, A. C., Wallin, M. B. & Weyhenmeyer, G. A. No prolonged‐time interval tendencies in pCO2 no matter rising pure carbon concentrations in boreal lakes, streams, and rivers. World Biogeochem. Cycles 31, 985–995 (2017).
Google Scholar
Raymond, P. A. & Hamilton, S. Okay. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans. Limnol. Oceanogr. Lett. 3, 143–155 (2018).
Google Scholar
Ulseth, A. J., Bertuzzo, E., Singer, G. A., Schelker, J. & Battin, T. J. Native weather-induced modifications in spring snowmelt impression ecosystem metabolism and carbon fluxes in an Alpine stream neighborhood. Ecosystems 21, 373–390 (2018).
Google Scholar
Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow within the path of rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).
Google Scholar
Drake, T. W. et al. Mobilization of aged and biolabile soil carbon by tropical deforestation. Nat. Geosci. 12, 541–546 (2019).
Google Scholar
Wit, F. et al. The impression of disturbed peatlands on river outgassing in Southeast Asia. Nat. Commun. 6, 10155 (2015).
Google Scholar
Moore, S., Gauci, V., Evans, C. D. & Net web page, S. E. Fluvial pure carbon losses from a Bornean blackwater river. Biogeosciences 8, 901–909 (2011).
Google Scholar
Masese, F. O., Salcedo-Borda, J. S., Gettel, G. M., Irvine, Okay. & McClain, M. E. Have an effect on of catchment land use and seasonality on dissolved pure matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry 132, 1–22 (2017).
Google Scholar
Bernot, M. J. et al. Inter‐regional comparability of land‐use outcomes on stream metabolism. Freshw. Biol. 55, 1874–1890 (2010). Among the many many first analysis exhibiting how land use alters ecosystem metabolism all through geographic areas.
Google Scholar
Griffiths, N. A. et al. Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnol. Oceanogr. 58, 1513–1529 (2013).
Google Scholar
Sweeney, B. W. et al. Riparian deforestation, stream narrowing, and lack of stream ecosystem firms. Proc. Natl Acad. Sci. 101, 14132–14137 (2004).
Google Scholar
Roley, S. S., Tank, J. L., Griffiths, N. A., Hall, R. O. Jr & Davis, R. T. The have an effect on of floodplain restoration on whole-stream metabolism in an agricultural stream: insights from a 5-year regular data set. Freshw. Sci. 33, 1043–1059 (2014).
Google Scholar
Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time sequence patterns in contrasting headwater streams of North America. Aquat. Sci. 79, 473–486 (2016).
Google Scholar
Blackburn, S. R. & Stanley, E. H. Floods enhance carbon dioxide and methane fluxes in agricultural streams. Freshw. Biol. 66, 62–77 (2021).
Google Scholar
Robertson, G. P., Paul, E. A. & Harwood, R. R. Greenhouse gases in intensive agriculture: contributions of specific particular person gases to the radiative forcing of the surroundings. Science 289, 1922–1925 (2000).
Google Scholar
Min, S.-Okay., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).
Google Scholar
Yin, J. et al. Huge enhance in worldwide storm runoff extremes pushed by native climate and anthropogenic modifications. Nat. Commun. 9, 4389 (2018).
Google Scholar
Myhre, G. et al. Sensible heat has significantly affected the worldwide hydrological cycle over the historic interval. Nat. Commun. 9, 1922 (2018).
Google Scholar
Messager, M. L. et al. World prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).
Google Scholar
Ward, A. S., Wondzell, S. M., Schmadel, N. M. & Herzog, S. P. Native climate change causes river neighborhood contraction and disconnection throughout the H.J. Andrews Experimental Forest, Oregon, USA. Entrance. Water 2, 7 (2020).
Google Scholar
Sabater, S., Timoner, X., Borrego, C. & Acuña, V. Stream biofilm responses to maneuver intermittency: from cells to ecosystems. Entrance. Environ. Sci. 4, 14 (2016).
Google Scholar
Gómez-Gener, L., Lupon, A., Laudon, H. & Sponseller, R. A. Drought alters the biogeochemistry of boreal stream networks. Nat. Commun. 11, 1795 (2020).
Google Scholar
Marcé, R. et al. Emissions from dry inland waters are a blind spot throughout the worldwide carbon cycle. Earth Sci. Rev. 188, 240–248 (2019).
Google Scholar
Blaszczak, J. R., Delesantro, J. M., Metropolis, D. L., Doyle, M. W. & Bernhardt, E. S. Scoured or suffocated: metropolis stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnol. Oceanogr. 64, 877–894 (2019).
Google Scholar
Reisinger, A. J. et al. Restoration and resilience of metropolis stream metabolism following Superstorm Sandy and completely different floods. Ecosphere 8, e01776 (2017).
Google Scholar
O’Donnell, B. & Hotchkiss, E. R. Coupling focus‐ and course of‐discharge relationships integrates water chemistry and metabolism in streams. Water Resour. Res. 55, 10179–10190 (2019).
Google Scholar
Thellman, A. et al. The ecology of river ice. J. Geophys. Res. Biogeosci. 126, e2021JG006275 (2021).
Google Scholar
Maavara, T. et al. River dam impacts on biogeochemical biking. Nat. Rev. Earth Environ. 1, 103–116 (2020).
Google Scholar
Rosentreter, J. A. et al. Half of worldwide methane emissions come from extraordinarily variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).
Google Scholar
Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011).
Google Scholar
Keller, P. S., Marcé, R., Obrador, B. & Koschorreck, M. World carbon value vary of reservoirs is overturned by the quantification of drawdown areas. Nat. Geosci. 14, 402–408 (2021).
Google Scholar
Calamita, E. et al. Unaccounted CO2 leaks downstream of a large tropical hydroelectric reservoir. Proc. Natl Acad. Sci. USA 118, e2026004118 (2021).
Google Scholar
Park, J.-H. et al. Evaluations and syntheses: anthropogenic perturbations to carbon fluxes in Asian river strategies – concepts, rising tendencies, and evaluation challenges. Biogeosciences 15, 3049–3069 (2018).
Google Scholar
Rosamond, M. S., Thuss, S. J. & Schiff, S. L. Dependence of riverine nitrous oxide emissions on dissolved oxygen ranges. Nat. Geosci. 5, 715–718 (2012).
Google Scholar
Stanley, E. H. et al. The ecology of methane in streams and rivers: patterns, controls, and worldwide significance. Ecol. Monogr. 86, 146–171 (2016). Key paper highlighting the place of streams and rivers for methane manufacturing and emissions and rising a conceptual framework on the environmental drivers of methane dynamics in fluvial ecosystems.
Google Scholar
Breitburg, D. et al. Declining oxygen throughout the worldwide ocean and coastal waters. Science 359, eaam7240 (2018).
Google Scholar
Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).
Google Scholar
Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W. & Bencala, Okay. E. Retention and transport of nutritional vitamins in a third‐order stream in northwestern California: hyporheic processes. Ecology 70, 1893–1905 (1989).
Google Scholar
Carter, A. M., Blaszczak, J. R., Heffernan, J. B. & Bernhardt, E. S. Hypoxia dynamics and spatial distribution in a low gradient river. Limnol. Oceanogr. 66, 2251–2265 (2021).
Google Scholar
Kadygrov, N. et al. On the potential of the ICOS atmospheric CO2 measurement neighborhood for estimating the biogenic CO2 value vary of Europe. Atmos. Chem. Phys. 15, 12765–12787 (2015).
Google Scholar
Hanson, P. C., Weathers, Okay. C. & Kratz, T. Okay. Networked lake science: how the World Lake Ecological Observatory Group (GLEON) works to understand, predict, and speak lake ecosystem response to worldwide change. Inland Waters 6, 543–554 (2018).
Google Scholar
Claustre, H., Johnson, Okay. S. & Takeshita, Y. Observing the worldwide ocean with biogeochemical-Argo. Annu. Rev. Mar. Sci. 12, 23–48 (2019).
Google Scholar
Jankowski, Okay. J., Mejia, F. H., Blaszczak, J. R. & Holtgrieve, G. W. Aquatic ecosystem metabolism as a software program in environmental administration. Wiley Interdiscip. Rev. Water 8, e1521 (2021).
Google Scholar
Mao, F. et al. Shifting previous the experience: a socio-technical roadmap for low-cost water sensor neighborhood features. Environ. Sci. Technol. 54, 9145–9158 (2020).
Google Scholar
Park, J., Kim, Okay. T. & Lee, W. H. Newest advances in knowledge and communications experience (ICT) and sensor experience for monitoring water prime quality. Water 12, 510 (2020).
Google Scholar
Yamazaki, D. et al. MERIT Hydro: a extreme‐determination worldwide hydrography map primarily based totally on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).
Google Scholar
Lin, P., Pan, M., Picket, E. F., Yamazaki, D. & Allen, G. H. A model new vector-based worldwide river neighborhood dataset accounting for variable drainage density. Sci. Data 8, 28 (2021).
Google Scholar
Allen, G. H. & Pavelsky, T. M. World extent of rivers and streams. Science 361, 585–587 (2018).
Google Scholar
Durand, M. et al. An intercomparison of distant sensing river discharge estimation algorithms from measurements of river high, width, and slope. Water Resour. Res. 52, 4527–4549 (2016).
Google Scholar
Frasson, R. P. M. et al. Exploring the weather controlling the error traits of the ground water and ocean topography mission discharge estimates. Water Resour. Res. 57, e2020WR028519 (2021).
Google Scholar
Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Speedy modifications to worldwide river suspended sediment flux by individuals. Science 376, 1447–1452 (2022).
Google Scholar
Campbell, A. D. et al. A overview of carbon monitoring in moist carbon strategies using distant sensing. Environ. Res. Lett. 17, 025009 (2022).
Google Scholar
Allen, G. H. et al. Similarity of stream width distributions all through headwater strategies. Nat. Commun. 9, 610 (2018).
Google Scholar
Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self-organization (Cambridge Univ. Press, 2001). Recreation-changing oeuvre formalizing the development and efficiency of river networks.
Bertuzzo, E., Helton, A. M., Hall, Robert, O. & Battin, T. J. Scaling of dissolved pure carbon eradicating in river networks. Adv. Water Resour. 110, 136–146 (2017).
Google Scholar
Marzadri, A., Dee, M. M., Tonina, D., Bellin, A. & Tank, J. L. Place of ground and subsurface processes in scaling N2O emissions alongside riverine networks. Proc. Natl Acad. Sci. USA 114, 4330–4335 (2017).
Google Scholar
Marzadri, A. et al. World riverine nitrous oxide emissions: the place of small streams and large rivers. Sci. Entire Environ. 776, 145148 (2021).
Google Scholar
Botter, G. & Durighetto, N. The stream measurement size curve: a software program for characterizing the time variability of the flowing stream measurement. Water Resour. Res. 56, e2020WR027282 (2020).
Google Scholar
Wollheim, W. M. et al. River neighborhood saturation thought: parts influencing the steadiness of biogeochemical present and demand of river networks. Biogeochemistry 141, 503–521 (2018).
Google Scholar
Durighetto, N., Vingiani, F., Bertassello, L. E., Camporese, M. & Botter, G. Intraseasonal drainage neighborhood dynamics in a headwater catchment of the Italian Alps. Water Resour. Res. 56, e2019WR02556 (2020).
Google Scholar
Montgomery, D. R. & Dietrich, W. E. Provide areas, drainage density, and channel initiation. Water Resour. Res. 25, 1907–1918 (1989).
Google Scholar
Fatichi, S., Ivanov, V. Y. & Caporali, E. A mechanistic ecohydrological model to investigate sophisticated interactions in chilly and warmth water‐managed environments: 1. Theoretical framework and plot‐scale analysis. J. Adv. Model. Earth. Syst. 4, M05002 (2012).
Ulseth, A. J. et al. Distinct air–water gasoline alternate regimes in low- and high-energy streams. Nat. Geosci. 12, 259–263 (2019).
Google Scholar
Hall, R. O. in Streams and Ecosystems in a Altering Setting (eds. Jones, J. J. & Stanley, E. H.) 151–180 (Academic, 2016).
Butman, D. & Raymond, P. A. Very important efflux of carbon dioxide from streams and rivers within the USA. Nat. Geosci. 4, 839–842 (2011).
Google Scholar
Duvert, C., Butman, D. E., Marx, A., Ribolzi, O. & Hutley, L. B. CO2 evasion alongside streams pushed by groundwater inputs and geomorphic controls. Nat. Geosci. 11, 813–818 (2018).
Google Scholar
Zhang, L. et al. Very important methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).
Google Scholar