• Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).

    Article 
    CAS 

    Google Scholar 

  • Raymond, P. A. et al. World carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article 
    CAS 

    Google Scholar 

  • Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the dimensions of streams and rivers. Nat. Geosci. 8, 696–699 (2015). Essential study conceptualizing (on the premise of a data synthesis) how the sources and magnitude of CO2 evasion flux change alongside a stream–river continuum.

  • Ciais, P. et al. in Native climate Change 2013 The Bodily Science Basis. Contribution of Working Group I to the Fifth Analysis Report of the Intergovernmental Panel on Native climate Change (eds Stocker, T. F. et al.) Ch. 6 (Cambridge Univ. Press, 2013).

  • Friedlingstein, P. et al. World carbon value vary 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).

    Article 

    Google Scholar 

  • Cole, J. J. et al. Plumbing the worldwide carbon cycle: integrating inland waters into the terrestrial carbon value vary. Ecosystems 10, 172–185 (2007). A pioneering study exhibiting the place of inland waters for large-scale carbon fluxes and highlighting them as ‘reactors’ fairly than ‘passive pipes’.

    Article 

    Google Scholar 

  • Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a gift synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).

    Article 
    CAS 

    Google Scholar 

  • Odum, H. T. Major manufacturing in flowing waters. Limnol. Oceanogr. 1, 102–117 (1956).

    Article 

    Google Scholar 

  • Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, 99–118 (2018). A synthesis of the predominant drivers and constraints on metabolic regimes of stream and river ecosystems.

    Article 

    Google Scholar 

  • Barnes, A. D. et al. Energy flux: the hyperlink between multitrophic biodiversity and ecosystem functioning. Developments Ecol. Evol. 33, 186–197 (2018).

    Article 

    Google Scholar 

  • Costanza, R. & Mageau, M. What’s a healthful ecosystem? Aquat. Ecol. 33, 105–115 (1999).

    Article 

    Google Scholar 

  • Blöschl, G. et al. Altering native climate every will improve and reduces European river floods. Nature 573, 108–111 (2019).

    Article 

    Google Scholar 

  • Gudmundsson, L. et al. Globally observed tendencies in indicate and extreme river transfer attributed to native climate change. Science 371, 1159–1162 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yang, X., Pavelsky, T. M. & Allen, G. H. The earlier and way forward for worldwide river ice. Nature 577, 69–73 (2020).

    Article 
    CAS 

    Google Scholar 

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Article 
    CAS 

    Google Scholar 

  • Belletti, B. et al. A few million limitations fragment Europe’s rivers. Nature 588, 436–441 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. Extreme-resolution mapping of worldwide ground water and its long-term modifications. Nature 540, 418–422 (2016).

    Article 
    CAS 

    Google Scholar 

  • Cooley, S. W., Ryan, J. C. & Smith, L. C. Human alteration of worldwide ground water storage variability. Nature 591, 78–81 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jaramillo, F. & Destouni, G. Native transfer regulation and irrigation elevate worldwide human water consumption and footprint. Science 350, 1248–1251 (2015).

    Article 
    CAS 

    Google Scholar 

  • Quinton, J. N., Govers, G., Oost, Okay. V. & Bardgett, R. D. The impression of agricultural soil erosion on biogeochemical biking. Nat. Geosci. 3, 311–314 (2010).

    Article 
    CAS 

    Google Scholar 

  • Mekonnen, M. M. & Hoekstra, A. Y. World anthropogenic phosphorus a whole lot to freshwater and associated grey water footprints and water air air pollution ranges: a extreme‐determination worldwide study. Water Resour. Res. 54, 345–358 (2018).

    Article 
    CAS 

    Google Scholar 

  • Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013). The first study exhibiting the extent to which human actions have altered the magnitude of updated lateral carbon fluxes from land to ocean.

    Article 
    CAS 

    Google Scholar 

  • Rüegg, J. et al. Pondering like a shopper: linking aquatic basal metabolism and shopper dynamics. Limnol. Oceanogr. Lett. 6, 1–17 (2021).

    Article 

    Google Scholar 

  • Fernández-Martínez, M. et al. World tendencies in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).

    Article 

    Google Scholar 

  • Behrenfeld, M. J. et al. Native weather-driven tendencies in updated ocean productiveness. Nature 444, 752–755 (2006).

    Article 
    CAS 

    Google Scholar 

  • Phillips, J. S. Time‐numerous responses of lake metabolism to gentle and temperature. Limnol. Oceanogr. 65, 652–666 (2020).

    Article 
    CAS 

    Google Scholar 

  • Uehlinger, U. Annual cycle and inter‐annual variability of gross main manufacturing and ecosystem respiration in a floodprone river all through a 15‐yr interval. Freshw. Biol. 51, 938–950 (2006).

    Article 
    CAS 

    Google Scholar 

  • Uehlinger, U. & Naegeli, M. W. Ecosystem metabolism, disturbance, and stability in a prealpine gravel mattress river. J. North Am. Benthol. Soc. 17, 165–178 (1998).

    Article 

    Google Scholar 

  • Mulholland, P. J. et al. Inter-biome comparability of issues controlling stream metabolism. Freshw. Biol. 46, 1503–1517 (2001).

    Article 
    CAS 

    Google Scholar 

  • Roberts, B. J., Mulholland, P. J. & Hill, W. R. Quite a lot of scales of temporal variability in ecosystem metabolism costs: outcomes from 2 years of regular monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).

    Article 
    CAS 

    Google Scholar 

  • Appling, A. P., Hall, R. O., Yackulic, C. B. & Arroita, M. Overcoming equifinality: leveraging very very long time sequence for stream metabolism estimation. J. Geophys. Res. Biogeosci. 123, 624–645 (2018).

    Article 
    CAS 

    Google Scholar 

  • Appling, A. P. et al. The metabolic regimes of 356 rivers within the USA. Sci. Data 5, 180292 (2018).

    Article 
    CAS 

    Google Scholar 

  • Canadell, M. B. et al. Regimes of main manufacturing and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021).

    Article 

    Google Scholar 

  • Myrstener, M., Gómez‐Gener, L., Rocher‐Ros, G., Giesler, R. & Sponseller, R. A. Nutritional vitamins have an effect on seasonal metabolic patterns and complete productiveness of Arctic streams. Limnol. Oceanogr. 66, S182–S196 (2021).

    Article 
    CAS 

    Google Scholar 

  • Savoy, P. et al. Metabolic rhythms in flowing waters: an technique for classifying river productiveness regimes. Limnol. Oceanogr. 64, 1835–1851 (2019).

    Article 

    Google Scholar 

  • Kirk, L., Hensley, R. T., Savoy, P., Heffernan, J. B. & Cohen, M. J. Estimating benthic gentle regimes improves predictions of main manufacturing and constrains light-use effectivity in streams and rivers. Ecosystems 24, 825–839 (2021).

    Article 

    Google Scholar 

  • Bernhardt, E. S. et al. Mild and transfer regimes regulate the metabolism of rivers. Proc. Natl Acad. Sci. USA 119, e2121976119 (2022).

    Article 
    CAS 

    Google Scholar 

  • Savoy, P. & Harvey, J. W. Predicting gentle regime controls on main productiveness all through CONUS river networks. Geophys. Res. Lett. 48, e2020GL092149 (2021).

    Article 

    Google Scholar 

  • Julian, J. P., Stanley, E. H. & Doyle, M. W. Basin-scale penalties of agricultural land use on benthic gentle availability and first manufacturing alongside a sixth-order temperate river. Ecosystems 11, 1091–1105 (2008).

    Article 

    Google Scholar 

  • Hall, R. O. et al. Turbidity, gentle, temperature, and hydropeaking administration main productiveness throughout the Colorado River, Grand Canyon. Limnol. Oceanogr. 60, 512–526 (2015).

    Article 

    Google Scholar 

  • Hosen, J. D. et al. Enhancement of main manufacturing all through drought in a temperate watershed is greater in greater rivers than headwater streams. Limnol. Oceanogr. 64, 1458–1472 (2019).

    Article 

    Google Scholar 

  • Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the worldwide carbon cycle to specific particular person metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article 

    Google Scholar 

  • Demars, B. O. L. et al. Temperature and the metabolic stability of streams. Freshw. Biol. 56, 1106–1121 (2011).

    Article 

    Google Scholar 

  • Tune, C. et al. Continental-scale decrease in web main productiveness in streams as a consequence of native climate warming. Nat. Geosci. 11, 415–420 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hood, J. M. et al. Elevated helpful useful resource use effectivity amplifies optimistic response of aquatic main manufacturing to experimental warming. Glob. Change Biol. 24, 1069–1084 (2018).

    Article 

    Google Scholar 

  • Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F. & Tempo, M. L. Have an effect on of meals internet development on carbon alternate between lakes and the surroundings. Science 277, 248–251 (1997).

    Article 
    CAS 

    Google Scholar 

  • Iannucci, F. M., Beneš, J., Medvedeff, A. & Bowden, W. B. Biogeochemical responses over 37 years to manipulation of phosphorus concentrations in an Arctic river: The Increased Kuparuk River Experiment. Hydrol. Course of. 35, e14075 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rosemond, A. D. et al. Experimental nutrient additions velocity up terrestrial carbon loss from stream ecosystems. Science 347, 1142–1145 (2015). A key study explaining how nutrient additional can velocity up terrestrial carbon loss from stream ecosystems.

    Article 
    CAS 

    Google Scholar 

  • Arroita, M., Elosegi, A. & Hall, R. O. Jr Twenty years of day-to-day metabolism current riverine restoration following sewage abatement. Limnol. Oceanogr. 64, 77–92 (2019).

    Article 

    Google Scholar 

  • Battin, T. J. et al. Biophysical controls on pure carbon fluxes in fluvial networks. Nat. Geosci. 1, 95–100 (2008). A vital article conceptualizing how bodily and natural processes combine to kind metabolic dynamics and carbon fluxes in fluvial networks.

    Article 
    CAS 

    Google Scholar 

  • Hoellein, T. J., Bruesewitz, D. A. & Richardson, D. C. Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnol. Oceanogr. 58, 2089–2100 (2013).

    Article 
    CAS 

    Google Scholar 

  • Marzolf, N. S. & Ardón, M. Ecosystem metabolism in tropical streams and rivers: a overview and synthesis. Limnol. Oceanogr. 66, 1627–1638 (2021).

    Article 

    Google Scholar 

  • Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Cross-ecosystem carbon flows connecting ecosystems worldwide. Nat. Commun. 9, 4825 (2018).

    Article 

    Google Scholar 

  • Ciais, P. et al. Empirical estimates of regional carbon budgets point out decreased worldwide soil heterotrophic respiration. Natl Sci. Rev. 8, nwaa145 (2020).

    Article 

    Google Scholar 

  • Bauer, J. E. et al. The altering carbon cycle of the coastal ocean. Nature 504, 61–70 (2013). Essential overview on the sources, alternate and fates of carbon throughout the coastal ocean and the way in which human actions have altered the coastal carbon cycle.

    Article 
    CAS 

    Google Scholar 

  • Reichert, P., Uehlinger, U. & Acuña, V. Estimating stream metabolism from oxygen concentrations: influence of spatial heterogeneity. J. Geophys. Res. Biogeosci. 114, G03016 (2009).

    Article 

    Google Scholar 

  • Koenig, L. E. et al. Emergent productiveness regimes of river networks. Limnol. Oceanogr. Lett. 4, 173–181 (2019).

    Article 

    Google Scholar 

  • Rodríguez-Castillo, T., Estévez, E., González-Ferreras, A. M. & Barquín, J. Estimating ecosystem metabolism to whole river networks. Ecosystems 22, 892–911 (2019).

    Article 

    Google Scholar 

  • Segatto, P. L., Battin, T. J. & Bertuzzo, E. The metabolic regimes on the dimensions of an entire stream neighborhood unveiled via sensor data and machine learning. Ecosystems 24, 1792–1809 (2021).

    Article 
    CAS 

    Google Scholar 

  • Loreau, M., Mouquet, N. & Holt, R. D. Meta‐ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 6, 673–679 (2003).

    Article 

    Google Scholar 

  • Mastrandrea, M. D. et al. Guidance Remember for Lead Authors of the IPCC Fifth Analysis Report on Fixed Treatment of Uncertainties (Intergovernmental Panel on Native climate Change (IPCC), 2010).

  • Tank, S. E., Fellman, J. B., Hood, E. & Kritzberg, E. S. Previous respiration: controls on lateral carbon fluxes all through the terrestrial‐aquatic interface. Limnol. Oceanogr. Lett. 3, 76–88 (2018). Essential synthesis on the mechanisms and controls of pure and inorganic carbon flows all through terrestrial–aquatic interfaces.

    Article 

    Google Scholar 

  • Aitkenhead, J. A. & McDowell, W. H. Soil C:N ratio as a predictor of annual riverine DOC flux at native and worldwide scales. World Biogeochem. Cycles 14, 127–138 (2000).

    Article 
    CAS 

    Google Scholar 

  • Regnier, P., Resplandy, L., Najjar, R. G. & Ciais, P. The land-to-ocean loops of the worldwide carbon cycle. Nature 603, 401–410 (2022).

    Article 
    CAS 

    Google Scholar 

  • van Hoek, W. J. et al. Exploring spatially categorical modifications in carbon budgets of worldwide river basins via the 20th century. Environ. Sci. Technol. 55, 16757–16769 (2021). A worldwide quantitative analysis of river carbon fluxes throughout the twentieth century, highlighting the blended have an effect on of environmental and anthropogenic controls on the long-term patterns of worldwide carbon export.

    Article 

    Google Scholar 

  • Abril, G. & Borges, A. V. Ideas and views: carbon leaks from flooded land: do we now have to replumb the inland water energetic pipe? Biogeosciences 16, 769–784 (2019). Essential overview emphasizing the place of flooding for inland water carbon biking on the worldwide scale.

    Article 
    CAS 

    Google Scholar 

  • Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P. & Ciais, P. How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: a case study for the Amazon Basin. One Earth 3, 226–236 (2020).

    Article 

    Google Scholar 

  • Raymond, P. A., Saiers, J. E. & Sobczak, W. V. Hydrological and biogeochemical controls on watershed dissolved pure matter transport: pulse‐shunt thought. Ecology 97, 5–16 (2016).

    Article 

    Google Scholar 

  • Catalán, N., Marcé, R., Kothawala, D. N. & Tranvik, L. J. Pure carbon decomposition costs managed by water retention time all through inland waters. Nat. Geosci. 9, 501–504 (2016).

    Article 

    Google Scholar 

  • Maavara, T., Lauerwald, R., Regnier, P. & Cappellen, P. V. World perturbation of pure carbon biking by river damming. Nat. Commun. 8, 15347 (2017).

    Article 
    CAS 

    Google Scholar 

  • Mendonça, R. et al. Pure carbon burial in worldwide lakes and reservoirs. Nat. Commun. 8, 1694–1697 (2017).

    Article 

    Google Scholar 

  • Downing, J. A. et al. Sediment pure carbon burial in agriculturally eutrophic impoundments over the previous century. World Biogeochem. Cycles 22, GB1018 (2008).

    Article 

    Google Scholar 

  • Deemer, B. R. et al. Greenhouse gasoline emissions from reservoir water surfaces: a model new worldwide synthesis. Bioscience 66, 949–964 (2016).

    Article 

    Google Scholar 

  • Abril, G. et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395–398 (2014).

    Article 
    CAS 

    Google Scholar 

  • Dodds, W. Okay. et al. Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River data. Freshw. Sci. 32, 1073–1087 (2013).

    Article 

    Google Scholar 

  • Ros, G. R., Sponseller, R. A., Bergström, A. Okay., Myrstener, M. & Giesler, R. Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams. Glob. Change Biol. 26, 1400–1413 (2020).

    Article 

    Google Scholar 

  • Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & Del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC keep CO2 supersaturation in small boreal streams. Sci. Entire Environ. 579, 902–912 (2017).

    Article 
    CAS 

    Google Scholar 

  • Aho, Okay. S., Hosen, J. D., Logozzo, L. A., McGillis, W. R. & Raymond, P. A. Highest costs of gross main productiveness maintained no matter CO2 depletion in a temperate river neighborhood. Limnol. Oceanogr. Lett. 6, 200–206 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wehrli, B. Conduits of the carbon cycle. Nature 503, 346–347 (2013).

    Article 
    CAS 

    Google Scholar 

  • Sarmiento, J. L. & Sundquist, E. T. Revised value vary for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589–593 (1992).

    Article 
    CAS 

    Google Scholar 

  • Lacroix, F., Ilyina, T., Laruelle, G. G. & Regnier, P. Reconstructing the preindustrial coastal carbon cycle via a world ocean circulation model: was the worldwide continental shelf already every autotrophic and a CO2 sink? Glob. Biogeochem. Cycles 35, e2020GB006603 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint surroundings‐ocean inversion for ground fluxes of carbon dioxide: 1. Methods and worldwide‐scale fluxes. World Biogeochem. Cycles 21, GB1019 (2007).

    Google Scholar 

  • Resplandy, L. et al. Revision of worldwide carbon fluxes primarily based totally on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lee, L.-C. et al. Unusual roles of discharge, slope and SOC in DOC transport in small mountainous rivers, Taiwan. Sci. Rep. 9, 1574 (2019).

    Article 

    Google Scholar 

  • Reddy, S. Okay. Okay. et al. Export of particulate pure carbon by the mountainous tropical rivers of Western Ghats, India: variations and controls. Sci. Entire Environ. 751, 142115 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X., Tarpley, D. & Sullivan, J. T. Quite a few responses of vegetation phenology to a warming native climate. Geophys. Res. Lett. 34, L19405 (2007).

    Article 

    Google Scholar 

  • Pan, Y. et al. An enormous and protracted carbon sink on the earth’s forests. Science 333, 988–993 (2011).

    Article 
    CAS 

    Google Scholar 

  • Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Huge will improve in carbon burial in northern lakes via the Anthropocene. Nat. Commun. 6, 10016 (2015).

    Article 
    CAS 

    Google Scholar 

  • Guillemette, F., Berggren, M., Giorgio, P. Adel. & Lapierre, J.-F. Will improve in terrestrially derived carbon stimulate pure carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).

    Article 

    Google Scholar 

  • Hastie, A., Lauerwald, R., Ciais, P., Papa, F. & Regnier, P. Historic and future contributions of inland waters to the Congo Basin carbon stability. Earth Syst. Dyn. 12, 37–62 (2020).

    Article 

    Google Scholar 

  • Nakhavali, M. et al. Leaching of dissolved pure carbon from mineral soils performs a serious place throughout the terrestrial carbon stability. Glob. Change Biol. 27, 1083–1096 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tian, H. et al. World patterns and controls of soil pure carbon dynamics as simulated by various terrestrial biosphere fashions: current standing and future directions. World Biogeochem. Cycles 29, 775–792 (2015).

    Article 
    CAS 

    Google Scholar 

  • Öquist, M. G. et al. The whole annual carbon stability of boreal forests is extraordinarily delicate to precipitation. Environ. Sci. Technol. Lett. 1, 315–319 (2014).

    Article 

    Google Scholar 

  • Jones, J. B.Jr, Stanley, E. H. & Mulholland, P. J. Prolonged‐time interval decline in carbon dioxide supersaturation in rivers all through the contiguous United States. Geophys. Res. Lett. 30, 1495 (2003).

    Article 

    Google Scholar 

  • Raymond, P. A. & Oh, N.-H. Long term modifications of chemical weathering merchandise in rivers intently impacted from acid mine drainage: insights on the impression of coal mining on regional and worldwide carbon and sulfur budgets. Earth Planet. Sci. Lett. 284, 50–56 (2009).

    Article 
    CAS 

    Google Scholar 

  • Ran, L. et al. Substantial decrease in CO2 emissions from Chinese language language inland waters as a consequence of worldwide change. Nat. Commun. 12, 1730 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zarnetske, J. P., Bouda, M., Geophysical, B. A., Saiers, J. & Raymond, P. Generality of hydrologic transport limitation of watershed pure carbon flux all through ecoregions of the USA. Geophys. Res. Lett. 45, 11,702–11,711 (2018).

    Article 
    CAS 

    Google Scholar 

  • Liu, S. et al. The importance of hydrology in routing terrestrial carbon to the surroundings by the use of worldwide streams and rivers. Proc. Natl Acad. Sci. USA 119, e2106322119 (2022).

    Article 
    CAS 

    Google Scholar 

  • Nydahl, A. C., Wallin, M. B. & Weyhenmeyer, G. A. No prolonged‐time interval tendencies in pCO2 no matter rising pure carbon concentrations in boreal lakes, streams, and rivers. World Biogeochem. Cycles 31, 985–995 (2017).

    Article 
    CAS 

    Google Scholar 

  • Raymond, P. A. & Hamilton, S. Okay. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans. Limnol. Oceanogr. Lett. 3, 143–155 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ulseth, A. J., Bertuzzo, E., Singer, G. A., Schelker, J. & Battin, T. J. Native weather-induced modifications in spring snowmelt impression ecosystem metabolism and carbon fluxes in an Alpine stream neighborhood. Ecosystems 21, 373–390 (2018).

    Article 
    CAS 

    Google Scholar 

  • Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow within the path of rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).

    Article 

    Google Scholar 

  • Drake, T. W. et al. Mobilization of aged and biolabile soil carbon by tropical deforestation. Nat. Geosci. 12, 541–546 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wit, F. et al. The impression of disturbed peatlands on river outgassing in Southeast Asia. Nat. Commun. 6, 10155 (2015).

    Article 
    CAS 

    Google Scholar 

  • Moore, S., Gauci, V., Evans, C. D. & Net web page, S. E. Fluvial pure carbon losses from a Bornean blackwater river. Biogeosciences 8, 901–909 (2011).

    Article 
    CAS 

    Google Scholar 

  • Masese, F. O., Salcedo-Borda, J. S., Gettel, G. M., Irvine, Okay. & McClain, M. E. Have an effect on of catchment land use and seasonality on dissolved pure matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry 132, 1–22 (2017).

    Article 
    CAS 

    Google Scholar 

  • Bernot, M. J. et al. Inter‐regional comparability of land‐use outcomes on stream metabolism. Freshw. Biol. 55, 1874–1890 (2010). Among the many many first analysis exhibiting how land use alters ecosystem metabolism all through geographic areas.

    Article 

    Google Scholar 

  • Griffiths, N. A. et al. Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnol. Oceanogr. 58, 1513–1529 (2013).

    Article 
    CAS 

    Google Scholar 

  • Sweeney, B. W. et al. Riparian deforestation, stream narrowing, and lack of stream ecosystem firms. Proc. Natl Acad. Sci. 101, 14132–14137 (2004).

    Article 
    CAS 

    Google Scholar 

  • Roley, S. S., Tank, J. L., Griffiths, N. A., Hall, R. O. Jr & Davis, R. T. The have an effect on of floodplain restoration on whole-stream metabolism in an agricultural stream: insights from a 5-year regular data set. Freshw. Sci. 33, 1043–1059 (2014).

    Article 

    Google Scholar 

  • Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time sequence patterns in contrasting headwater streams of North America. Aquat. Sci. 79, 473–486 (2016).

    Article 

    Google Scholar 

  • Blackburn, S. R. & Stanley, E. H. Floods enhance carbon dioxide and methane fluxes in agricultural streams. Freshw. Biol. 66, 62–77 (2021).

    Article 
    CAS 

    Google Scholar 

  • Robertson, G. P., Paul, E. A. & Harwood, R. R. Greenhouse gases in intensive agriculture: contributions of specific particular person gases to the radiative forcing of the surroundings. Science 289, 1922–1925 (2000).

    Article 
    CAS 

    Google Scholar 

  • Min, S.-Okay., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    Article 
    CAS 

    Google Scholar 

  • Yin, J. et al. Huge enhance in worldwide storm runoff extremes pushed by native climate and anthropogenic modifications. Nat. Commun. 9, 4389 (2018).

    Article 
    CAS 

    Google Scholar 

  • Myhre, G. et al. Sensible heat has significantly affected the worldwide hydrological cycle over the historic interval. Nat. Commun. 9, 1922 (2018).

    Article 
    CAS 

    Google Scholar 

  • Messager, M. L. et al. World prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ward, A. S., Wondzell, S. M., Schmadel, N. M. & Herzog, S. P. Native climate change causes river neighborhood contraction and disconnection throughout the H.J. Andrews Experimental Forest, Oregon, USA. Entrance. Water 2, 7 (2020).

    Article 

    Google Scholar 

  • Sabater, S., Timoner, X., Borrego, C. & Acuña, V. Stream biofilm responses to maneuver intermittency: from cells to ecosystems. Entrance. Environ. Sci. 4, 14 (2016).

    Article 

    Google Scholar 

  • Gómez-Gener, L., Lupon, A., Laudon, H. & Sponseller, R. A. Drought alters the biogeochemistry of boreal stream networks. Nat. Commun. 11, 1795 (2020).

    Article 

    Google Scholar 

  • Marcé, R. et al. Emissions from dry inland waters are a blind spot throughout the worldwide carbon cycle. Earth Sci. Rev. 188, 240–248 (2019).

    Article 

    Google Scholar 

  • Blaszczak, J. R., Delesantro, J. M., Metropolis, D. L., Doyle, M. W. & Bernhardt, E. S. Scoured or suffocated: metropolis stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnol. Oceanogr. 64, 877–894 (2019).

    Article 
    CAS 

    Google Scholar 

  • Reisinger, A. J. et al. Restoration and resilience of metropolis stream metabolism following Superstorm Sandy and completely different floods. Ecosphere 8, e01776 (2017).

    Article 

    Google Scholar 

  • O’Donnell, B. & Hotchkiss, E. R. Coupling focus‐ and course of‐discharge relationships integrates water chemistry and metabolism in streams. Water Resour. Res. 55, 10179–10190 (2019).

    Article 

    Google Scholar 

  • Thellman, A. et al. The ecology of river ice. J. Geophys. Res. Biogeosci. 126, e2021JG006275 (2021).

    Article 

    Google Scholar 

  • Maavara, T. et al. River dam impacts on biogeochemical biking. Nat. Rev. Earth Environ. 1, 103–116 (2020).

    Article 

    Google Scholar 

  • Rosentreter, J. A. et al. Half of worldwide methane emissions come from extraordinarily variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).

    Article 
    CAS 

    Google Scholar 

  • Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011).

    Article 
    CAS 

    Google Scholar 

  • Keller, P. S., Marcé, R., Obrador, B. & Koschorreck, M. World carbon value vary of reservoirs is overturned by the quantification of drawdown areas. Nat. Geosci. 14, 402–408 (2021).

    Article 
    CAS 

    Google Scholar 

  • Calamita, E. et al. Unaccounted CO2 leaks downstream of a large tropical hydroelectric reservoir. Proc. Natl Acad. Sci. USA 118, e2026004118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Park, J.-H. et al. Evaluations and syntheses: anthropogenic perturbations to carbon fluxes in Asian river strategies – concepts, rising tendencies, and evaluation challenges. Biogeosciences 15, 3049–3069 (2018).

    Article 
    CAS 

    Google Scholar 

  • Rosamond, M. S., Thuss, S. J. & Schiff, S. L. Dependence of riverine nitrous oxide emissions on dissolved oxygen ranges. Nat. Geosci. 5, 715–718 (2012).

    Article 
    CAS 

    Google Scholar 

  • Stanley, E. H. et al. The ecology of methane in streams and rivers: patterns, controls, and worldwide significance. Ecol. Monogr. 86, 146–171 (2016). Key paper highlighting the place of streams and rivers for methane manufacturing and emissions and rising a conceptual framework on the environmental drivers of methane dynamics in fluvial ecosystems.

    Article 

    Google Scholar 

  • Breitburg, D. et al. Declining oxygen throughout the worldwide ocean and coastal waters. Science 359, eaam7240 (2018).

    Article 

    Google Scholar 

  • Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).

    Article 
    CAS 

    Google Scholar 

  • Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W. & Bencala, Okay. E. Retention and transport of nutritional vitamins in a third‐order stream in northwestern California: hyporheic processes. Ecology 70, 1893–1905 (1989).

    Article 

    Google Scholar 

  • Carter, A. M., Blaszczak, J. R., Heffernan, J. B. & Bernhardt, E. S. Hypoxia dynamics and spatial distribution in a low gradient river. Limnol. Oceanogr. 66, 2251–2265 (2021).

    Article 

    Google Scholar 

  • Kadygrov, N. et al. On the potential of the ICOS atmospheric CO2 measurement neighborhood for estimating the biogenic CO2 value vary of Europe. Atmos. Chem. Phys. 15, 12765–12787 (2015).

    Article 
    CAS 

    Google Scholar 

  • Hanson, P. C., Weathers, Okay. C. & Kratz, T. Okay. Networked lake science: how the World Lake Ecological Observatory Group (GLEON) works to understand, predict, and speak lake ecosystem response to worldwide change. Inland Waters 6, 543–554 (2018).

    Article 

    Google Scholar 

  • Claustre, H., Johnson, Okay. S. & Takeshita, Y. Observing the worldwide ocean with biogeochemical-Argo. Annu. Rev. Mar. Sci. 12, 23–48 (2019).

    Article 

    Google Scholar 

  • Jankowski, Okay. J., Mejia, F. H., Blaszczak, J. R. & Holtgrieve, G. W. Aquatic ecosystem metabolism as a software program in environmental administration. Wiley Interdiscip. Rev. Water 8, e1521 (2021).

    Article 

    Google Scholar 

  • Mao, F. et al. Shifting previous the experience: a socio-technical roadmap for low-cost water sensor neighborhood features. Environ. Sci. Technol. 54, 9145–9158 (2020).

    Article 
    CAS 

    Google Scholar 

  • Park, J., Kim, Okay. T. & Lee, W. H. Newest advances in knowledge and communications experience (ICT) and sensor experience for monitoring water prime quality. Water 12, 510 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yamazaki, D. et al. MERIT Hydro: a extreme‐determination worldwide hydrography map primarily based totally on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).

    Article 

    Google Scholar 

  • Lin, P., Pan, M., Picket, E. F., Yamazaki, D. & Allen, G. H. A model new vector-based worldwide river neighborhood dataset accounting for variable drainage density. Sci. Data 8, 28 (2021).

    Article 

    Google Scholar 

  • Allen, G. H. & Pavelsky, T. M. World extent of rivers and streams. Science 361, 585–587 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Durand, M. et al. An intercomparison of distant sensing river discharge estimation algorithms from measurements of river high, width, and slope. Water Resour. Res. 52, 4527–4549 (2016).

    Article 

    Google Scholar 

  • Frasson, R. P. M. et al. Exploring the weather controlling the error traits of the ground water and ocean topography mission discharge estimates. Water Resour. Res. 57, e2020WR028519 (2021).

    Article 

    Google Scholar 

  • Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Speedy modifications to worldwide river suspended sediment flux by individuals. Science 376, 1447–1452 (2022).

    Article 
    CAS 

    Google Scholar 

  • Campbell, A. D. et al. A overview of carbon monitoring in moist carbon strategies using distant sensing. Environ. Res. Lett. 17, 025009 (2022).

    Article 

    Google Scholar 

  • Allen, G. H. et al. Similarity of stream width distributions all through headwater strategies. Nat. Commun. 9, 610 (2018).

    Article 

    Google Scholar 

  • Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self-organization (Cambridge Univ. Press, 2001). Recreation-changing oeuvre formalizing the development and efficiency of river networks.

  • Bertuzzo, E., Helton, A. M., Hall, Robert, O. & Battin, T. J. Scaling of dissolved pure carbon eradicating in river networks. Adv. Water Resour. 110, 136–146 (2017).

    Article 
    CAS 

    Google Scholar 

  • Marzadri, A., Dee, M. M., Tonina, D., Bellin, A. & Tank, J. L. Place of ground and subsurface processes in scaling N2O emissions alongside riverine networks. Proc. Natl Acad. Sci. USA 114, 4330–4335 (2017).

    Article 
    CAS 

    Google Scholar 

  • Marzadri, A. et al. World riverine nitrous oxide emissions: the place of small streams and large rivers. Sci. Entire Environ. 776, 145148 (2021).

    Article 
    CAS 

    Google Scholar 

  • Botter, G. & Durighetto, N. The stream measurement size curve: a software program for characterizing the time variability of the flowing stream measurement. Water Resour. Res. 56, e2020WR027282 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wollheim, W. M. et al. River neighborhood saturation thought: parts influencing the steadiness of biogeochemical present and demand of river networks. Biogeochemistry 141, 503–521 (2018).

    Article 
    CAS 

    Google Scholar 

  • Durighetto, N., Vingiani, F., Bertassello, L. E., Camporese, M. & Botter, G. Intraseasonal drainage neighborhood dynamics in a headwater catchment of the Italian Alps. Water Resour. Res. 56, e2019WR02556 (2020).

    Article 

    Google Scholar 

  • Montgomery, D. R. & Dietrich, W. E. Provide areas, drainage density, and channel initiation. Water Resour. Res. 25, 1907–1918 (1989).

    Article 

    Google Scholar 

  • Fatichi, S., Ivanov, V. Y. & Caporali, E. A mechanistic ecohydrological model to investigate sophisticated interactions in chilly and warmth water‐managed environments: 1. Theoretical framework and plot‐scale analysis. J. Adv. Model. Earth. Syst. 4, M05002 (2012).

    Google Scholar 

  • Ulseth, A. J. et al. Distinct air–water gasoline alternate regimes in low- and high-energy streams. Nat. Geosci. 12, 259–263 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hall, R. O. in Streams and Ecosystems in a Altering Setting (eds. Jones, J. J. & Stanley, E. H.) 151–180 (Academic, 2016).

  • Butman, D. & Raymond, P. A. Very important efflux of carbon dioxide from streams and rivers within the USA. Nat. Geosci. 4, 839–842 (2011).

    Article 
    CAS 

    Google Scholar 

  • Duvert, C., Butman, D. E., Marx, A., Ribolzi, O. & Hutley, L. B. CO2 evasion alongside streams pushed by groundwater inputs and geomorphic controls. Nat. Geosci. 11, 813–818 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L. et al. Very important methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).

    Article 

    Google Scholar 

  • By Editor

    Leave a Reply